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Ischemic heart disease is the major cause of death in adults in most developed and many devel-
oping countries and is now the most common cause of death worldwide. Effective treatments of
coronary artery disease involve the percutaneous revascularization techniques of balloon angio-
plasty and stenting or coronary artery bypass grafting (CABG). The long-term success of these
approaches is limited by the development over time of native vessel restenosis and graft occlusions.
In addition, despite continued advances in the prevention and treatment of coronary artery dis-
ease, there is still a large number of patients who are not candidates for conventional treatments.

Vasculogenesis, angiogenesis, and arteriogenesis are processes that are responsible for the
development and maintenance of the circulatory system. The growth of new vasculature that
occurs in the post-embryological phase has been termed “angiogenesis.” Angiogenesis is of critical
importance, not only during normal growth, but also in pathological situations. Some conditions,
like neoplastic diseases, are enhanced by excessive vascular growth, whereas, in others like
ischemic heart disease, inadequate vascular growth contributes to morbidity and mortality.
Therapeutic angiogenesis, through growth factor protein administration or gene therapy, has
emerged as a promising new method of treatment for patients with coronary artery disease.

Angiogenesis

The term angiogenesis, first used by Hertig in 1935 to describe the growth of blood vessels in the
placenta, was re-introduced by Folkman in 1972 to describe neovascularization accompanying solid
tumour growth.1 Angiogenesis is the process by which new capillaries sprout and differentiate from
pre-existing microvascular networks. This process results in newly developed microvessels, most
resembling capillaries (diameter of 5 to 8 µm). Although the exact mechanisms are not fully under-
stood, angiogenesis is thought to involve a series of events including:

• activation of endothelial cells within a pre-existing vessel and vasodilation of the parent vessel; 
• degradation of the basement membrane and extracellular matrix; 
• migration of activated endothelial cells from the parent vessel directed by chemotactic factors

liberated from fibroblasts, monocytes, platelets, mast cells and neutrophils, towards the site
where angiogenesis is required; 

• proliferation of endothelial cells in the newly forming vessels; 
• differentiation of these endothelial cells back to a quiescent phenotype with lumen formation; 
• recruitment of pericytes along the newly formed vascular structures; 
• formation of a new basement membrane by the newly organized endothelial cells and pericytes; 
• remodeling of the neovascular network, with maturation and stabilization of the blood vessels.
Angiogenesis is rapidly initiated in response to hypoxia or ischemia and endothelial cell activation

is the first process to take place in physiological or pathophysiological angiogenesis. Hypoxia induces
increased levels of a family of hypoxia inducible transcription factors (HIFs) including HIF-1β (or the
aryl hydrocarbon-receptor nuclear translocator, ARNT), HIF-1α , and HIF-2α . They mediate the
response to hypoxia by binding to specific DNA sequences – the hypoxia-response promoter elements
– that regulate the transcription of an array of genes critical to the cellular response to hypoxia,
including several genes that regulate angiogenesis.2

Leukocytes and platelets are potent producers of angiogenic growth factors, and several adhe-
sion, chemoattractant, and activator molecules govern their emigration from the blood stream.
Integral membrane proteins, including integrins, play an important role in the process of angiogene-
sis. Integrins are heterodimeric cell surface receptors composed of two non-covalently associated
transmembrane glycoproteins (α and β) that mediate attachment of cells to their foundation, but are
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quently develops into a complex, interconnecting network of
mature blood vessels.

Arteriogenesis

The importance of the collateral coronary circulation has
long been known and the mechanisms governing the recruit-
ment, growth, and proliferation of collateral vessels differs
from those regulating angiogenesis and vasculogenesis.19,29-34

Acute occlusion of a large- or medium-sized artery often
results in the recruitment of pre-existing arteriolar connec-
tions that can bypass the site of occlusion. Although this
process does not require new vessel formation, the subsequent
growth and proliferation of these collateral vessels occurs
through a process called arteriogenesis. Collateral arteries are
able to proliferate into large conductance arteries that can
efficiently restore blood flow to ischemic territories. Adequate
development of these collaterals may take days to weeks in
order to compensate for critical stenoses of the nutrient
branches of the coronary tree. Genetic factors are responsible
for the variable number of pre-existing intracoronary connec-
tions and their capacity to grow, leading to marked inter- and
intra-species variability.35,36

Increased shear stress is an important stimulator of arteri-
ogenesis that leads to changes within the newly recruited
artery. The most important change is activation of the
endothelium. This results in an increased expression of a num-
ber of genes, partially via a protein that binds to the shear
stress responsive element (SSRE) that is present in the pro-
moter of many of these genes, including nitric oxide synthase
[NOS], platelet-derived growth factor [PDGF], and mono-
cyte chemoattractant protein [MCP-1]. Adhesion molecules
are also upregulated allowing for the adhesion and invasion of
monocytes and platelets that are potent producers of growth
factors. The process of arteriogenesis does not require hypox-
ia as a physical stimulus.

Neovascularization

Neovascularization depends on two distinct processes;
cell proliferation and vessel differentiation. These processes
must occur in harmony in order for functioning vessels to
arise. It is likely that cell proliferation and differentiation
occur in concert and growth modulators may preferentially
promote one process over the other in response to specific
signaling mechanisms. Indeed, most angiogenically active
factors are present in normal resting conditions and up- and
down-regulation of these substances is determined by physio-
logical and pathophysiological moderators.22,37,38 Growth
promoting factors are generated and active to varying degrees
in response to the local environment and, depending on the
local milieu, may be capable of promoting neovascularization.
While VEGF and fibroblast growth factor (FGF) may regulate
basement membrane disintegration, leukocyte and precursor
cell recruitment, proliferation and adhesion, and the presence
of Ang-1 may be required for cell differentiation, maturation,
and the establishment of a mature vessel (Figure 1). The inter-
dependence of angiogenic factors is exemplified by FGF and
NO. In the presence of NO, the action of FGF may switch
from one that causes endothelial cell activation to one
responsible for differentiation.23 Finally, such a paradigm
would suggest that therapeutic angiogenesis would require
the provision of several factors at appropriate points in the

also involved in intracellular signal transduction.3-5

Endothelial cells express a number of different integrins, and
of these, α vβ3 and α vβ5 have been shown to be particularly
important during angiogenesis.6 Alphavβ3 is a receptor for
many proteins with an exposed Arg-Gly-Asp (RGD) tripep-
tide component, including vitronectin, fibronectin, fibrino-
gen, laminin, collagen, thrombospondin, osteopontin, and
von Willebrand factor. Although the α vβ3 receptor is not
widely expressed, it is prominent on cytokine-activated
endothelial cells or smooth muscle cells, suggesting its rele-
vance in angiogenesis.7 A number of angiogenic cytokines
have been shown to increase the expression of the αv and β3

subunits on endothelial cells,8-11 and it has been demonstrated
that α vβ3 antagonists (antibodies and cyclic RGD peptides)
inhibit angiogenesis.12-15 Newer data suggest that endothelial
cell survival and proliferation in response to vascular
endothelial growth factor (VEGF) may require the associa-
tion of one of its receptors with αvβ3. 

Basement membrane degradation, extracellular matrix
invasion, and capillary lumen formation are also essential
components of the angiogenic process; all are dependent on a
cohort of proteases and protease inhibitors. Although a num-
ber of enzymatic systems have been implicated in extracellu-
lar proteolysis, many of the enzymes belong to one of two
families: the serine proteases, in particular the plasminogen
activator (PA)/plasmin system, or the matrix metalloproteases
(MMPs). 

Plasminogen activators u-PA and t-PA convert the ubiqui-
tous plasma protein plasminogen to plasmin. Plasmin acti-
vates certain MMPs, has a broad trypsin-like activity, and
degrades proteins such as fibronectin, laminin and the protein
core of proteoglycans.16-18 

Subsequent steps in angiogenesis – including endothelial
cell migration, proliferation, new vessel formation and matu-
ration – result in a functional vascular conduit.4,19-21 Nitric
oxide (NO) appears to play a crucial role in mediating various
processes, including terminating the proliferative actions of
growth factors and promoting the formation of vascular
tubes.21-23 In the setting of coronary ischemia, NO is required
for vascular endothelial growth factor (VEGF) to function,24

which may in turn, be mediated by endothelin release.25

Secretion of platelet-derived growth factor (PDGF) helps
attract other elements to the neovascular platform. Cell-to-
cell contact and the presence of transforming growth factor-
beta (TGF-ß) are thought to spur the differentiation and mat-
uration of pericytes and smooth muscle cells.21 The
glycoprotein angiopoietin-1 (Ang-1) and its tyrosine receptor
kinase Tie-2, stabilize the immature endothelial cell network,
attract pericytes, and maintain biochemical interactions and
vessel integrity21 (Figure 1).

Vasculogenesis

The process of vasculogenesis is distinct from angiogene-
sis. The term vasculogenesis is strictly reserved for the forma-
tion of new blood vessels during embryogenesis. Initially,
mesenchymal cells differentiate in situ into early heman-
gioblasts that form cellular aggregates (blood islands), in
which the inner cell population differentiates into
hematopoeitic precursors and the outer cell population gives
rise to the primitive endothelial cells that generate a function-
ing vascular network.26-28 The primitive vascular plexus subse-
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months, they observed increased “coronary blush” (a surro-
gate measure [unvalidated] of collateral formation) among
FGF injected patients compared to placebo. This effect per-
sisted to 3 years, and was associated with improved echocar-
diographic ejection fraction and functional class.54 Similar
positive results were seen in small trials reported by Sellke et
al,55 Laham et al,56,58,59 and Unger et al57 (Table 2). 
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process to allow for desired product.39 Many angiogenic
factors have now been identified (Table 1).89

Studies of growth factor-induced 
myocardial angiogenesis 

Pre-clinical studies

Numerous animal experiments have demonstrated the
link between growth factors and new vessel formation. Initial
studies with FGF demonstrated accelerated wound healing in
diabetic mice, leading to the first indicated use of topical
growth factors for debrided diabetic ulcers.40-42 Animal studies
of therapeutic angiogenesis have centered around two mod-
els: the rabbit hind limb model of peripheral ischemia and the
porcine model of myocardial ischemia.43-47

Both VEGF and FGF, administered by either an intra-arte-
rial or intra-muscular routes, can promote collateral blood
vessel development after ligation of the rabbit femoral artery.
In these studies, treated animals had more angiographically
and histologically visible collateral vessels, greater hind limb
blood flow, higher distal perfusion pressure, and enhanced
muscle performance. 

Models of ischemic porcine myocardium, induced by
placement of an ameroid constriction of a coronary artery,
have also demonstrated augmentation of myocardial vascular-
ization after both protein and gene treatment administered
via intracoronary or perivascular injection.48-52 These pre-clini-
cal studies supported the proof of principle that vascular
growth factors can promote angiogenesis to improve blood
flow to ischemic muscle. 

Clinical trials

Until recently, human angiogenic experiments have been
predominantly limited to small series in which VEGF or FGF,
protein or gene, have been administered.53-70 Delivery strate-
gies have included intracoronary, epicardial, or direct
myocardial injection of either VEGF or bFGF protein, or
genetic material. The latter can be delivered as naked plasma
DNA or in a viral vector.

Schumacher and colleagues were the first to report on
therapeutic angiogenesis in human myocardium. In this phase
I, randomized, blinded study, 40 patients undergoing CABG
with a left internal mammary artery (LIMA) graft and a left
anterior descending (LAD) artery stenosis distal to the anas-
tomosis site were enrolled. Patients were randomly assigned
to direct intramyocardial injection of aFGF or denatured pro-
tein control near the distal non-grafted segment.53 At 3

Table 1: List of angiogenic proteins89

Angiogen Endothelial 
cell specific

Acidic fibroblast growth factor (aFGF) No
Basic fibroblast growth factor (bFGF) No
Fibroblast growth factor 3 (FGF-3) No
Fibroblast growth factor 4 (FGF-4) No
Fibroblast growth factor 5 (FGF-5) No
Fibroblast growth factor 6 (FGF-6) No
Fibroblast growth factor 7 (FGF-7) No
Fibroblast growth factor 8 (FGF-8) No
Fibroblast growth factor 9 (FGF-9) No
Angiogenin 1 Yes
Angiogenin 2 Yes
Hepatocyte growth factor / scatter 
factor (HGF/SF) No
Platelet-derived growth factor (PDE-CGF) Yes
Transforming growth factor-α (TGF-α) No
Transforming growth factor-ß (TGF-ß) No
Tumour necrosis factor-α (TNF-α) No
Vascular endothelial growth factor 121 
(VEGF 121) Yes
Vascular endothelial growth factor 145 
(VEGF 145) Yes
Vascular endothelial growth factor 165 
(VEGF 165) Yes
Vascular endothelial growth factor 189 
(VEGF 189) Yes
Vascular endothelial growth factor 206 
(VEGF 206) Yes
Vascular endothelial growth factor B 
(VEGF-B) Yes
Vascular endothelial growth factor C 
(VEGF-C) Yes
Vascular endothelial growth factor D 
(VEGF-D) Yes
Vascular endothelial growth factor E 
(VEGF-E) Yes
Vascular endothelial growth factor F 
(VEGF-F) Yes
Placental growth factor Yes
Angiopoietin-1 No
Angiopoietin-2 No
Thrombospondin (TSP) No
Proliferin Yes
Ephrin-A1 (B61) Yes
E-selectin Yes
Chicken chemotactic and angiogenic 
factor (cCAF) No
Leptin Yes
Heparin affin regulatory peptide (HARP) No
Heparin No
Granulocyte colony stimulating factor No
Insulin-like growth factor No
Interleukin 8 No
Thyroxine No
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Figure 1: Vessel maturation 
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Six small studies have evaluated VEGF delivery to
ischemic myocardium (Table 3). Protein therapy, performed
with varying doses of intracoronary recombinant human
VEGF, was studied by Henry et al60 and Hendel et al.61 DNA
coding for VEGF has been delivered either as naked plasmid
DNA (Losordo et al,62 Vale et al,63,66 Hendel et al,64 and Symes
et al67), or using an adenoviral vector (Rosengart et al68,69). The
results of these small trials were promising, and suggested that
both VEGF protein and DNA were effective for the produc-
tion of new blood vessels.

Collectively, these phase 1 and 2 studies described the
experience of 298 patients without blinded outcome assess-
ment. Although data from these studies cannot be used to
make conclusions concerning efficacy, they firmly establish
the feasibility and safety of different methods of gene transfer
and have set the stage for larger randomized trials. 

Only two relatively large, randomized, double-blind,
placebo-controlled studies have been performed in humans.

The FIRST Study (FGF-2 Initiating Revascularization
Support Trial) recruited 337 patients with angina who were
considered sub-optimal for traditional revascularization. In a
double-blind, placebo-controlled manner, participants were
randomized to 3 doses of intracoronary recombinant bFGF
protein (0.3, 3.0 and 30 µg/kg). At 90 days, there was no
difference between groups in the primary endpoint of exer-
cise treadmill times, or in the secondary endpoints of nuclear
perfusion parameters (p= 0.64), and quality-of-life indices
(Seattle Angina Questionnaire [SAQ] or short-form 36 [SF-
36]). On post-hoc analysis, a benefit was shown in older
patients (>63 yrs), which was statistically significant
(P=0.025) compared with younger patients.

The VIVA Trial (VEGF in Ischemia for Vascular
Angiogenesis) involved a patient cohort similar to that of the
FIRST Trial with evidence of a reversible perfusion defect on
nuclear scans. Patients (n=178) were assigned randomly to two
doses of VEGF (17 or 50 ng/kg) or placebo. VEGF protein was
administered as a 20-minute intracoronary infusion during

coronary angiography, followed by three 4-hour intravenous
infusions on days 3, 6, and 9. Although no improvement was
seen in the primary endpoint of treadmill score at 60 days,
mean CCS (Canadian Cardiovascular Society) anginal class
was significantly lower for the high dose group compared to
placebo at 120 days (1.6 ± 0.1 vs 2.1 ± 0.1, P = 0.04). 

No safety concerns were raised in either of these landmark
trials. Although both trials were unable to demonstrate effica-
cy by their primary endpoint, several factors may account for
the lack of effect. In the two randomized human trials, growth
factor delivery was accomplished via an intracoronary or intra-
venous route. It is unclear if this method provides adequate
tissue levels to stimulate and maintain angiogenesis. This is
particularly true for bFGF, given the poor specificity for target
endothelium. In fact, dose-ranging studies for both FGF and
VEGF suggest a graded effect at higher doses.59,61 It is possible
that injection into myocardium or pericardial fat is necessary
for clinically relevant dose delivery.56

Issues of study design

In planning controlled trials to assess the effectiveness of
gene therapies, investigators must consider a number of
factors. These include: 

• selection of the appropriate means of delivery of thera-
peutic material 

• determination of appropriate endpoints to be studied
• quantification and resultant objectification of the results 
• assurance of adequate controls
• selection of patients to be included
• determination of the mechanisms of any observed clini-

cal effects
• assessment of complications – potential, actual, local,

systemic, immediate and long-term.

Delivery modalities and strategies 

Delivery of growth factors has been accomplished using
two means: either through the use of single or multiple doses

Table 2: Clinical trials of FGF delivery

Parameter Schumacher et al Laham et al Unger et al Laham et al Sellke et al FIRST
(1998)53 (1999)56 (2000)57 (2000)59 (1998)55

N 40 24 25 66 8 337

Design RDB RDB RDB observational observational RDB

Placebo-
controlled Y N Y N N Y

Thoracotomy Y Y N N Y N

Agent aFGF protein bFGF protein bFGF protein bFGF protein bFGF protein bFGF protein

Vector none heparin/alginate none none heparin/alginate none
microcapsules microcapsules

Dose 70 mg 10/100 µg 3-100 µg/kg 0.33-48 µg/kg 10/100 µg 200 µg

Delivery intramyocardial epicardial fat intracoronary IC/IV epicardial fat intracoronary
implantation implantation

Endpoint DSA clinical/MPI GXT MPI MPI GXT/MPI/QOL

Result positive positive safe positive safe negative

GXT = graded exercise stress test;  RDB = randomized, double blind;  MPI = myocardial perfusion imaging;  IC = intracoronary;
IV = intravascular,  DSA = digital subtraction angiography; QOL = quality-of-life
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of recombinant protein, or by a gene transfer approach. Each
strategy has its limitations. Potential advantages for the use of
proteins include the ability to adjust the dose and thus define a
therapeutic window between efficacy and toxicity. This would
allow withdrawal of treatment if and when necessary. Factors
against the use of protein for therapeutic angiogenesis are the
considerable cost involved in producing significant quantities
of pyrogen-free materials; the appearance of secondary effects
(prolonged administration of bFGF is associated with a
decrease in arterial pressure, moderate thrombocytopenia, and
moderate anemia); and the requirement for repeated or pro-
longed administration of protein. Local perivascular delivery
via myocardial injection, pericardial fat implantation of coated
microspheres, or pericardial instillation has been attempted in
order to address the latter limitation.56,70-72

Delivery strategies for protein have recently been studied
more thoroughly in an experimental model. In a pig model,
tissue and myocardial distribution of labeled bFGF was deter-
mined at 1 hour and 24 hours after intracoronary or intra-
venous delivery by measuring 125I-bFGF-specific activity.73,74 At
1 hour, total cardiac activity was 0.88 with intracoronary
delivery which dropped significantly to 0.05 at 24 hours.
Cardiac-specific activity with intravenous administration was
lower at 1 hour (0.26), but also decreased significantly to 0.04
by 24 hours. Intrapericardial delivery resulted in a cardiac-
specific activity of 1.45 after 1 hour which increased to 2.98
by 24 hours.74 The 1-hour cardiac-specific activity was highest
with intramyocardial delivery at 4.31, which decreased to
2.30 by 24 hours. The study showed that intrapericardial and
intramyocardial delivery results in a more favorable myocar-
dial distribution of growth factor than intracoronary or intra-
venous delivery. Additional data from the study indicated that
intrapericardial delivery was limited to the epicardial layers
and required a normal pericardium.

In contrast to protein delivery, gene therapy results in the
prolonged secretion of growth product by host cells, offering

sustained protein levels with a single administration.
However, the potential for extra-lesional uptake of the gene
or vector and distant, unwanted effects in non-target tissues,
related either to the vector or the gene product that it
encodes, is of concern.

There are many means to deliver genes coding for angio-
genic products. The simplest is through the delivery of naked
plasmid DNA. Injection of naked DNA into myocardium has
been shown to result in growth factor expression for a consid-
erable period of time, without incorporation into host
DNA.69,75 Many facilitated means of delivery have also been
studied. Liposomal encapsulation has been tested; however
current techniques are associated with low transfection effi-
ciencies. Retrovirus encapsulation and delivery allows for
effective and long-term gene expression through DNA incor-
poration into the genome; however the potential for activa-
tion of retroviral genes in the host DNA is of concern. The
use of adenoviral vectors is an effective means of delivery;
however it is associated with an immune response that can
lead to destruction of the vector or a significant systemic
inflammatory response.76

Efficacy endpoints

The choice of efficacy endpoints for clinical trials remains
an area of controversy. The ideal endpoint for angiogenesis
trials should have the following characteristics: 

• It should address the primary hypothesis and represent
a direct marker of efficacy.

• It should be clinically meaningful.
• It should be easily measured and not be prohibitively

costly to perform or analyze.
• It should provide insight into mechanisms. 
• It should lend itself to statistical analysis. 
The endpoints for trials of angiogenesis can be consid-

ered either clinical (angina status, functional capacity, or qual-
ity-of-life) or physiologic (improved myocardial perfusion,

CARDIOLOGYRounds

Table 3: Clinical trials of VEGF delivery

Parameter Hendel et al Henry et al Vale et al Symes et al Hendel et al Rosengart et al Losordo et al VIVA
(2000)64 (1998)60 (2001)63 (1999)67 (2000)61 (1999)68,69 (1998)62

N 30 15 30 20 14 21 5 178

Design observational Observational observational observational observational observational observational RDB

Placebo 
controlled N N N N N N N Y

Thoracotomy N N Y Y N Y Y N

Agent VEGF-C DNA rhVEGF protein VEGF165 DNA VEGF165 DNA rhVEGF protein VEGF121 DNA VEGF165 DNA rhVEGF 
protein

Vector plasmid none plasmid plasmid none adenovirus plasmid none

Dose 0.2/0.8/2.0 mg 0.005/0.017/ 125/250/500 µg 125 µg 0.005/0.017/ 1000 µg 125 µg 17/50 
0.05/0.167 µg/kg 0.05/0.167 µg/kg ng/kg/min

Delivery intramyocardial intracoronary intramyocardial intramyocardial intracoronary intramyocardial intramyocardial IC/IV

Endpoint clinical/GXT/ MPI clinical/GXT/ clinical/MPI/ MPI clinical/MPI/ clinical/MPI/ clinical/GXT
MPI/NOGA MPI angiography angiography angiography angiography

GXT

Result positive positive positive positive positive positive safety negative

GXT = graded exercise stress test;  RDB = randomized, double blind;  MPI = myocardial perfusion imaging;  NOGA = NOGA
electromechanical mapping,  IC = intracoronary;  IV = intravascular
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improvement in vessel collateralization, improvement in
global or regional wall motion).

Objective endpoints such as death, myocardial infarc-
tion, and repeat revascularization can provide solid data.
However, results from several trials in patients with no ther-
apeutic option indicate a 5% mortality rate over 2 years of
follow-up. A prohibitively large study population would
therefore be required to show a reduction in mortality.
Exercise stress testing is one surrogate clinical assessment
that has been considered as an endpoint for angiogenesis tri-
als. The advantages are that exercise stress testing is often
used in phase 1 and 2 studies, the results are quantitative,
semi-objective (rate pressure product, time to ST depres-
sion), and the findings are fairly reproducible. The disadvan-
tages are that comorbidities (peripheral vascular disease,
COPD, arthritis) may limit exercise performance, day-to-
day variability exists, and the reasons for test termination
may still be subjective.

Changes in the Canadian Cardiovascular Society (CCS)
score or response to the Seattle Angina Questionnaire (SAQ)
have also been used as clinical endpoints in angiogenesis
trials. Advantages are that they are highly relevant to patients
and easy to interpret (ie, CCS), are sensitive to change, are
fairly reproducible (esp. SAQ), and are familiar to most clini-
cians. Disadvantages are that they are more subjective than
exercise stress testing (double-blinding necessary), the CCS
score requires observer input (SAQ doesn’t), changes in SAQ
are not easily interpreted (lack of familiarity by clinicians),
and the placebo effects are substantial (~40% in the DIRECT
DMR study).

The advantages of using the Medical Outcome Study
(Short Form, 36 items) (MOS SF-36) or Health Utility Index
(HUI) are that they are both broadly applicable, sensitive to
change, and normal values have been established for various
disease states. Disadvantages of these types of analyses are
that they are considered to be softer endpoints, are more sub-
jective, and changes are not easily interpreted (lack of famil-
iarity by clinicians).

One of the problems common to all clinical endpoints is
that they are prone to placebo effects. One solution is to look
for objective endpoints that can explain subjective outcomes
such as reduction in CCS class. In this regard, “angiogenesis
specific” quality-of-life or symptom assessment tools may be
necessary. An additional problem with clinical endpoints is
that small changes may be undetected, but may still be clini-
cally meaningful (basement effect). 

Although clinical endpoints are employed in trials of
myocardial angiogenesis, physiologic assessments are pre-
ferred as primary endpoints. Several have been considered,
including SPECT myocardial perfusion imaging, MRI, and
PET. The advantages of nuclear scintigraphy are that it is sen-
sitive to changes after revascularization, it is reproducible,
and wall motion can be assessed. There are concerns, howev-
er, over the adequacy of the spatial resolution obtainable with
nuclear imaging. MRI has enormous potential. It is able to
provide excellent spatial resolution and information on struc-
ture, function, and flow, however, although it is gaining
greater acceptance with time, prohibitive cost and restrictive
availability limits its use. PET scanning is more sensitive than
SPECT in measuring coronary flow reserve. It remains the
only way to measure absolute blood flow. The limitations of

PET imaging are the poor spatial resolution, the lack of wide-
spread availability, and its cost.

Potential complications

Angiogenic agents are thought to have the potential to
induce unintended neovascularization in nontargeted tissues.
Mitigating this possibility are data that suggest that angiogen-
esis will occur in response to a cytokine only under appropri-
ate conditions. Both FGF and VEGF receptors are upregulated
when tissues become ischemic,77-80 therefore, it would be
expected that ischemic tissue would respond more sensitively
to the biological effects of FGF and VEGF than would normal
tissues. This concept was supported by a study in which nor-
mal and ischemic canine myocardium was exposed to high
local levels of aFGF protein administered with an epicardial
sponge over a prolonged time.81 In this study, only ischemic
myocardium responded with an angiogenic response.
Although the high threshold for neovascularization in normal
tissue is reassuring, there is still concern about patients who
have co-existent conditions in which cytokine receptors are
abnormally upregulated, such as malignant tumours and dia-
betic retinopathy.

There is a potential that angiogenesis therapy may trigger
the growth of existent, but unrecognized tumours. FGF is a
mitogen that stimulates a wide variety of cell types and there-
fore, may stimulate tumour growth. Although VEGF acts pri-
marily on vascular endothelium, a number of non-endothelial
tumor cells have been found to possess low levels of function-
al VEGF receptors.82 In addition to direct effects of the angio-
genic agents on tumour cell proliferation, there is evidence to
suggest that solid tumours require an angiogenic stimulus to
supply nutrients required for growth beyond a critical size.
Induction of angiogenesis may therefore indirectly contribute
to the growth of dormant tumours. Angiogenic factors may
also contribute to de novo tumour development. In addition,
the mechanisms by which FGF and VEGF have the potential
to stimulate neoplastic growth are relevant to their reported
proatherogenic effects. 

The potent vascular permeability activity of VEGF can
also have unwanted consequences. Transient peripheral
edema was frequently observed in studies of VEGF adminis-
tered to patients with lower extremity ischemia.

There may be several reasons for the disparate results of
the reported clinical trials of angiogenesis and the results from
animal models. In addition to the issues of dose, mechanisms
of delivery, endpoints, and the choice of patient cohort stud-
ied may have confounded the clinical trials, making positive
results unattainable. Unlike animal populations, the patient
population of interest has demonstrated an inability to form or
recruit adequate collateral vessels prior to inclusion in the tri-
als. In addition, the response to simple growth factor delivery
may differ in the presence of diffuse atherosclerosis and
endothelial dysfunction, compared with the response in exper-
imental ischemic models.83 Also, various cardiac medications
(ie, aspirin, captopril, lovastatin, and furosemide) and health
states (ie, hypercholesterolemia, smoking, diabetes, and age),
negatively impact the angiogenic response.33,71,84-89 The recog-
nition that patients enrolled in clinical trials of angiogenesis
are highly selected on the basis of anatomy, symptoms, LV
function, concurrent disease, and motivation, also has an
impact on the generalization of the results of clinical trials.
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Future research

Current animal studies are focusing on the mechanisms of
angiogenesis, examining particularly the roles of different
compounds and the local and host factors that govern their
effectiveness. The action of angiogenic factors in the milieu
of coronary artery disease is also an area of active research.
The results of animal studies and early results of clinical trials
suggest that delivery of a cocktail of angiogenic factors might
be more effective than delivery of a single agent, and may
more closely mimic the physiologic angiogenic response.
Finally, stem or progenitor cell transplantation may allow for
the development of all components required for new
myocardium and functioning vascular network, and may pro-
vide a feasible therapy in the future.

Drs. Michael Kutryk, MD, PhD, and Saleem Kassam,
MD, MCE, are physicians-in-training in the Division of
Cardiology, Terrence Donnelly Heart Centre, St. Michael’s
Hospital, University of Toronto, Toronto. Dr. Duncan J.
Stewart is the Head of the Division of Cardiology at St.
Michael’s Hospital.
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